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The eigenvalues and eigenvectors of the least-squares normal

matrix for the full-matrix re®nement problem contain a great

deal of information about the quality of a model; in particular

the precision of the model parameters and correlations

between those parameters. They also allow the isolation of

those parameters or combinations of parameters which are not

determined by the available data. Since a protein re®nement is

usually under-determined without the application of

geometric restraints, such indicators of the reliability of a

model offer an important contribution to structural know-

ledge. Eigensystem analysis is applied to the normal matrices

for the re®nement of a small metalloprotein using two data

sets and models determined at different resolutions. The

eigenvalue spectra reveal considerable information about the

conditioning of the problem as the resolution varies. In the

case of a restrained re®nement, it also provides information

about the impact of various restraints on the re®nement.

Initial results support conclusions drawn from the free R

factor. Examination of the eigenvectors provides information

about which regions of the model are poorly determined. In

the case of a restrained re®nement, it is also possible to isolate

places where X-ray and geometric restraints are in disagree-

ment, usually indicating a problem in the model.
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1. Introduction

Full-matrix least squares has been widely used for the

re®nement of small molecules for many years. The approach

has been adopted for two reasons. The re®nement converges

in very few steps and as a byproduct produces estimates for

the standard deviations of all the re®nement parameters

(Stout & Jensen, 1989). A notable review of the theory of least

squares for crystallographic applications is given by Diamond

(1981).

Full-matrix re®nement has not been widely applied to

protein structures. This is partly because the size of the

re®nement normal matrix increases as the square of the

number of parameters, rendering the calculation impractical

until recently. Also, since the data resolution is typically lower,

the data-to-parameter ratio is typically much smaller than for

small molecules, requiring strong geometrical restraints to be

placed upon the model to ensure convergence to a reasonable

solution. These restraints are treated as additional data. The

restraints typically dominate the estimated standard devia-

tions for the parameters. If there are any inappropriate

restraints or if the scaling of restraints and diffraction data is

not correct (a common problem), the estimated standard

deviations will be unreliable (Kleywegt & Jones, 1995).



Eigensystem analysis of the least-squares normal matrix has

been suggested (Ten Eyck, 1996, 2000) as a possible means to

obtain accuracy information for protein models at low reso-

lution. Similar calculations have been performed in the past

for small molecules (mentioned by Watkin, 1988). Preliminary

results from the eigensystem analysis of a protein re®nement

are presented here and give some insight into the working of

the re®nement calculation. The theory is set out in detail in

Ten Eyck (2000). A short geometrical description of the

approach is given here.

Least-squares re®nement involves the minimization of

some re®nement residual by bringing the model into agree-

ment with the X-ray data and geometrical restraints. The

re®nement residual is a function in the high-dimensional space

whose axes are the model parameters; these parameters are

varied to locate a minimum in the residual. The full-matrix

least-squares approach determines new values for the para-

meters by constructing a second-order approximation to the

re®nement residual and then moving to the minimum of the

approximation.

The minimum will typically have different curvatures along

different directions in parameter space. The second-order

approximation is a multi-dimensional quadratic function, such

that a contour of constant re®nement residual will form a

hyper-ellipse around the minimum. The principal axes of this

hyper-ellipse need not be aligned with the parameter axes. The

curvatures of the re®nement residual along each of these axis

are given by the eigenvalues of the normal matrix and their

directions are given by the eigenvectors.

The curvatures and directions provide information about

which parameter combinations are well determined or badly

determined and about the overall conditioning of the problem.

Examination of the curvatures and hence of the shape of the

function in the region of the minimum also provides insight

into the behavior of various re®nement methods. The

approximation to the minimum is equivalently described by

either the normal matrix, by its inverse or by the eigenvalues

and eigenvectors. Depending on what information is required

one representation may be more useful than the others.

1.1. Definitions

E.s.d.: estimated standard deviation. Calculated for indivi-

dual parameters or their combinations (e.g. bond lengths)

from the variance±covariance matrix.

Eigenparameter: the eigenvectors represent a rotated set of

axes in the parameter space. The `eigenparameters' are the

ordinates in the parameter space in terms of the rotated axes.

(Eigen-)parameter contribution: the `contribution' of a

parameter to an eigenvector (or vice versa) is the square of the

cosine of the angle between the eigenvector and the para-

meter axis. The eigenvectors are orthonormal, so that the sum

of the `contributions' from every parameter to any eigenvector

is 1.

Goodness-of-®t: the ratio of the actual ®t of the model to

the observations that are the objective of the ®t, GooF =

ÿfPi�Ri�x� ÿ Ro
i �2=�i

2g=�nr ÿ n��1=2
, where Ri�x� is the calcu-

lated value of the ith objective function, Ro
i is its desired value,

�i is the expected e.s.d., nr is the number of objectives and n is

the number of parameters.

Normal equations: the least-squares re®nement equations

may be written JTJ�x � JTr.

RHS: right-hand side (of the normal equations).

J: the matrix of derivatives of the residuals with respect to

the parameters, Jij � @ri=@xj.

N: the re®nement normal matrix. N � JTWJ and is real,

symmetric and non-negative de®nite. W is the variance-

covariance matrix for the observations. For statistically inde-

pendent observations, W is a diagonal matrix.

Nÿ1: the inverse of the normal matrix (when it exists). If the

restraints are statistically independent and have unit variance,

this is the variance±covariance matrix of the parameters at

convergence. The correlation matrix may be obtained from

the covariance matrix by dividing each row and column by the

square root of the diagonal element (the standard deviation of

the corresponding parameter).

R factor and Rfree: the R factor is de®ned as

R �P��jFoj ÿ jFcj��=P jFoj, where jFoj is the observed

structure-factor amplitude and jFcj is the calculated structure-

factor amplitude. Rfree is an R factor computed using re¯ec-

tions that were not included in the re®nement (BruÈ nger, 1992).

r: the vector of weighted restraint residuals,

ri � �Ri�x� ÿ Ro
i �=�i. For X-ray terms, Ri�x� will be the scaled

calculated intensity sjFc�h�j2 and Ro
i will be the observed

intensity jFo�h�j2. �i is the estimated standard deviation of the

observed intensity for observation i.

x: the vector of parameters.

�x: the vector of shifts required to minimize the residuals,

subject to the assumptions of least squares.

2. Implementation and testing

The eigenvalue analysis described above was tested using two

data sets at different resolutions for the protein Azotobacter

vinelandii 7-Fe ferredoxin (Stout et al., 1998). The protein

crystallized in space group P41212, with unit-cell parameters

a = b = 54.8, c = 92.6 AÊ for the frozen crystals. The structure

contains 106 residues and two Fe±S clusters. The structure was

originally solved by Stout (1993) with room-temperature data

to 1.9 AÊ (9586 re¯ections). The model was re®ned in X-PLOR,

with a ®nal R factor of 21.5%. 30 water molecules were

modeled.

The structure was later re-re®ned (Stout et al., 1998) using

data from frozen crystals to a resolution of 1.3 AÊ (30 880

re¯ections). The model was re®ned with anisotropic thermal

parameters and 162 water molecules (nine parameters per

atom = 9211 parameters) using SHELXL (Sheldrick, 1997) to

an R factor of 15%. The re®nement was monitored by tracking

the free R factor, but the ®nal model was computed using all of

the data. Therefore, the free R factor was estimated for this

model by perturbing the coordinates and forcing the thermal

parameters to be isotropic. Anisotropic re®nement was then
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repeated with a free set of 5% of the re¯ections (chosen by

selecting every 20th re¯ection), giving a value of 19%. (Since

most of the results described in this paper involve examination

of the conditioning of the re®nement problem rather than

actual re®nement of the model, the free re¯ections have been

included for the remaining calculations.)

To calculate the least-squares normal matrix, the re®nement

program SHELXL (Sheldrick, 1997) was modi®ed to write out

the upper triangle of the normal matrix as a binary ®le, along

with the RHS vector of the normal equations. This data was

then read into a separate program which performed the

eigenvalue and eigenvector calculation using the LAPACK

routine ssyev (Anderson et al., 1999). Tests revealed that the

matrix diagonalization must be performed at 64-bit precision

for numerical stability. Calculation at 32-bit precision may be

possible with preconditioning (x3), but this depends on the

propagation of errors in the diagonalization algorithm and

requires careful investigation.

Both calculations are extremely memory intensive. The

SHELXL calculation requires the upper triangle of the

normal matrix and the eigenvector calculation requires a full

matrix (which holds the eigenvectors at the end of the calcu-

lation) to be held in real memory. At 64-bit precision, the

SHELXL calculation for the high-resolution case of 9200

parameters requires roughly 400 Mb of memory and the

diagonalization requires roughly 700 Mb of memory. The

binary ®les were of similar sizes. These sizes vary as the square

of the number of parameters.

The calculations were performed using a Cray T90 vector

computer, which calculates and stores all ¯oating-point

numbers to 64-bit precision. For the high-resolution

problem, the SHELXL calculation of a single cycle of least-

squares re®nement including writing the normal matrix took

about 50 CPU min and the diagonalization took about

120 CPU min. The normal matrix calculation was also

performed on a DEC Alphaserver 4100 (533 MHz 21164) and

took 3.5 h at 32-bit precision. These calculations are therefore

within the reach of a dedicated fast workstation with suf®cient

memory. CPU time varies at up to the third power of the

number of parameters.

Normal matrices were calculated for a range of different

re®nement problems, including different resolutions of X-ray

data and different types and numbers of stereochemical

restraints. All the calculations were performed using one of

two starting models. In xx5 and 7 this model is the isotropic

X-PLOR model after restrained full-matrix re®nement against

the 1.9 AÊ data; in x6 this is the anisotropic SHELXL model

after restrained full-matrix re®nement against the 1.3 AÊ data.

Thus, the results for unrestrained or lower resolution calcu-

lations do not represent the conditioning of the problem at the

minimum, but rather the curvature of the re®nement residual

at some point near the minimum. (The second-order expan-

sion is equivalent to the assumption that the curvature matrix

is slowly varying.) This allows more direct comparisons of the

curvatures and also avoids the problem that many of the

unrestrained re®nements described would be unstable over

multiple cycles.

Diagonalization of the normal matrix produces the eigen-

values and corresponding eigenvectors in order of increasing

eigenvalue. This convenient numbering has been adopted in

referring to particular eigenvalues and eigenvectors.

A suite of small programs has been written to analyze the

resulting large data ®les, including conversion of eigenvectors

to a form which may be visualized using the XTALVIEW

molecular-graphics software (McRee, 1992).

3. Scaling the refinement parameters

The elements of the normal matrix and, therefore, its eigen-

values and eigenvectors are totally dependent on the units

chosen for each model parameter. Thus, if a scale factor is

applied to some subset of the parameters, the eigenvalue

spectrum and distribution of parameters amongst eigenvectors

will also change.

Different scalings will lead to the emphasis of different

information in the eigensystem analysis. It is necessary to

understand the effects of the choice of parameter scales on the

re®nement problem, so that the results of eigensystem analysis

will be correctly interpreted and so that the scaling of the

model parameters may be chosen to highlight the desired

features of the re®nement problem.

3.1. Scaling of similar parameters

An arbitrary set of units may be chosen for any parameter

in the re®nement calculation. For example, in the re®nement

of positional parameters alone in an orthorhombic crystal

form, changing all the parameters from fractional to aÊngstrom

coordinates involves only a rescaling of each parameter. Since

the normal matrix is the self-product of the matrix of deriva-

tives of the residuals with respect to the parameters, scaling

the parameters will apply the inverse scale to both rows and

columns of the normal matrix, i.e.

x0i � sixi �1�
implies

N0ij � �1=sisj�Nij; �2�

where x0 and N0 are the vector of scaled parameters and the

corresponding normal matrix.

Let S be a diagonal matrix, with diagonal elements si. Then

x0 � Sx �3�
N0 � Sÿ1NSÿ1: �4�

The right-hand side of the normal equations and the vector of

shifts will also be scaled as

r0 � Sÿ1r �5�
�x0 � S �x: �6�

When the normal equations are assembled the scaling

matrices cancel. The resulting changes to the model will be

unaffected by the change in parameterization.



Similarly, the variance±covariance matrix changes under

scaling of the parameters. This changes the e.s.d.s of the

rescaled parameters,

N0ÿ1 � SNÿ1S: �7�

However, once the results are shifted back onto an absolute

aÊngstrom scale the e.s.d.s of the model parameters are

unchanged. The correlation matrix is also unaffected by the

choice of parameter scales, since dividing the elements of the

variance±covariance matrix by the standard deviation of each

parameter exactly cancels the effect of the scaling.

Consider a re®nement calculation for an orthorhombic

system using fractional coordinates. Normally, both the X-ray

data and the geometrical restraints will operate isotropically

when expressed in aÊngstrom coordinates (assuming a sphere

of data is collected and the overall anisotropy is low). The

mean variances of the atomic positions in aÊngstroms should be

similar along different directions. If we shift to fractional

coordinates, the mean variance along longer axes will be

smaller. There will, therefore, be some separation of coordi-

nate types in the eigenvalue spectrum. Positional parameters

along long axes will tend to contribute to eigenvectors with

larger eigenvalues (and smaller variances) and positional

parameters along short axes will tend to contribute to eigen-

vectors with smaller eigenvalues (and larger variances).

Separation of parameters by crystal direction can be

prevented by applying scale factors which bring the position

parameters onto an orthogonal aÊngstrom scale (or any other

distance unit). This analysis can be extended to arbitrary

crystal forms by allowing S to be a block-diagonal matrix

whose 3� 3 diagonal blocks correspond to the orthogonal-

ization matrix. In this case the correlation matrix will be

slightly altered.

Positional parameters will still be separated in the eigen-

value spectrum according to atomic type, since the contribu-

tion of an atom to the diffraction pattern varies with its

number of electrons. Furthermore, different numbers and

types of stereochemical restraints are applied to different

types of atoms. When using X-ray terms alone, it may be

informative to further scale the orthogonal aÊngstrom coordi-

nates by the number of electrons in the particular atom or

even a combination of number of atoms and U value. The

former case may indicate well and poorly determined

domains; the latter could indicate if parts of the structure may

be well determined despite having high thermal motion.

This approach has been used by Tronrud (1992) in the TNT

re®nement package, in which the parameters are scaled by the

curvature of the atomic density, combining information from

the size, shape and thermal motion of each atom. This

approach signi®cantly accelerates the convergence of the

re®nement.

3.2. Scaling of diverse parameters

The problem of scaling together diverse parameters,

including positional parameters along different directions,

isotropic Us, diagonal and off-diagonal terms of anisotropic Us

and special parameters such as the overall scale factor or

partial occupancies is more dif®cult. Clearly, the mean

curvatures of the positional and thermal parameters can be

changed arbitrarily by choice of units (e.g. representing

thermal parameters as Bs or Us). Parameters of different types

may not therefore be compared on the basis of curvature

alone. In some cases (as later in this paper) it may be useful to

choose units which give rise to very different mean curvatures

for positional and thermal parameters, so the variation

amongst parameters of each type may be examined separately.

For numerical purposes (i.e. to minimize the impact of

limited numerical precision) it is often convenient to chose a

scaling which minimizes the range of curvatures. This is

referred to as `preconditioning' the normal matrix (see, for

example, Trefethen & Bau, 1997). The simple system

Ax � b �8�
can be conditioned by pre-multiplying the equations by a

matrix Mÿ1, where M is some approximation to A which is also

easily invertible. This gives

Mÿ1Ax � Mÿ1b: �9�
Since M is an approximation to A, the matrix Mÿ1A is a

(generally very poor) approximation to the identity matrix.

The resulting system of equations may be rapidly solved by

iterative methods or solved by direct methods to a greater

precision. In the following analysis we will apply this approach

in the form

��Mÿ1�TA�Mÿ1���Mx� � �Mÿ1�Tb; �10�
where MTM is some approximation to A. When M is

symmetric (commonly the case) the transpositions can be

omitted.

This type of approach could be applied to the scaling of

different re®nement-parameter types as follows. Solve the

normal equations and calculate e.s.d.s for all the parameters

and then scale every parameter by the inverse of its e.s.d. This

is the equivalent of setting the scaling matrix S to the reci-

procal of the square root of the diagonal elements of the

variance±covariance matrix (the inverse normal matrix). Thus,

Sÿ1Sÿ1 is a diagonal approximation to Nÿ1 and Sÿ1NSÿ1 is an

approximation to the identity matrix.

Since all the eigenvalues of the identity matrix are unity,

preconditioning the normal matrix will tend to reduce the

dynamic range of the eigenvalues, in the extreme case to the

point where they are all equal. Clearly, this conceals any

information which was present in the eigenvalue spectrum.

However, it may be useful to apply a block scaling to all the

thermal parameters so that the mean variance of the positional

parameters and the mean variance of the thermal parameters

are equal. Results of this approach will be published in a

future paper.

3.3. Parameter scales in SHELXL

For the purposes of these initial studies, no additional

scaling was applied. The parameter units were determined by

the internal representation in SHELXL. Positional para-
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meters are represented in fractional coordinates along the cell

axes. The test structure is orthorhombic, so the coordinate

axes are orthogonal. Some separation of positional parameters

is expected by axis length, but in practice this is small in

comparison with the range of curvatures arising from other

causes.

Thermal parameters are represented as Us. In the case of

anisotropic thermal parameters, the matrix elements are

positional variances and covariances along the cell directions

(which are orthogonal in this case) in AÊ 2 units. Thus, no

separation is expected between different thermal components.

The relative scales of the fractional positional coordinates

and U values leads to a dramatic difference in curvature

between positional and thermal parameters. This was fortu-

nate in this case because it separated the positional and

thermal parameters in the eigenvalue spectra, simplifying their

interpretation. It may be useful to adjust the parameter scales

in other cases to achieve this same condition.

4. Weighting the refinement restraints

The variance±covariance matrix is only obtained by inversion

of the normal matrix when the restraints are statistically

independent and have unit variance. If this is not the case, the

variance±covariance matrix must be calculated by inverting

�JTWJ�, where W is the variance±covariance matrix of the

restraints. Restraints are conventionally normalized to unit

variance, but two special cases must be considered. The

experimental e.s.d.s for the X-ray data may be unreliable and

the restraints may be correlated.

In macromolecular re®nement it is common to weight the

X-ray restraints to correct the e.s.d.s, which are often poorly

estimated by data-processing packages. This weight is an

additional re®nement parameter, adjusted to match the

goodness-of-®t between X-ray and stereochemical restraints.

SHELXL does not re®ne this weight, but rather allows the

user to specify the weight if the e.s.d.s are known to be poorly

estimated. The e.s.d.s of the test data gave reasonable statistics

using the default SHELXL settings. This will have to be

addressed if good estimates of model precision are to be

obtained for typical structures in the PDB. The e.s.d.s for

geometrical restraints are based on many well re®ned inde-

pendently determined high-resolution structures and may

therefore be considered both reliable and independent.

The estimation of parameter variances and covariances by

the methods described here will be invalid when the errors in

the experimental data are correlated, for example in the case

of systematic errors localized in reciprocal space. Note that

correlation of errors means that the error estimate for one

observation is a function of the error estimates of other

observations. The much more common case in which the

errors are poorly estimated but depend on overall properties

of the data processing rather than on the individual values of

other error estimates does not lead to systematic error in the

e.s.d.s. Uniformly poor estimates of the e.s.d.s of the obser-

vations merely increase the overall uncertainty in the para-

meters of the model.

The normal matrix and its inverse provide valuable infor-

mation concerning the behavior of the re®nement calculation,

even if there are problems with determining the exact

variance±covariance matrix. Analysis of the effects of

different re®nement protocols in terms of the effect on the

structure of the normal matrix and its inverse can identify

problems and provide quantitative measures of improvements

achievable. Comparison of different parameterizations (for

example, different models for restraining atomic displacement

parameters) can demonstrate quantitatively the level of detail

that can be supported by particular data sets. This type of

analysis automatically takes account of the resolution, range

and accuracy of the data, the solvent content of the crystal and

the presence of non-crystallographic symmetry, all of which

complicate simple resolution-based rules of thumb. Finally,

even though estimates of individual parameter e.s.d.s may be

in error, they are still better error estimates than anything else

presently available.

5. Case study: isotropic model at 1.9 AÊ

5.1. The eigenvalue spectrum

Restrained and unrestrained re®nement calculations were

set up using the room-temperature model and 1.9 AÊ data. The

parameter shifts in SHELXL were set to zero, so that no

re®nement was actually performed, but the normal matrix was

produced in each case. For the restrained calculation,

geometrical restraints were placed upon bond lengths (DFIX

keyword), angles (DANG), chiral volumes (CHIV), ¯atness of

residues and rings (FLAT), `bumps' (BUMP) and difference in

U value between bonded atoms (DELU), using the default

restraint values and dictionary of the SHELX software

(Sheldrick, 1997). The model had 3547 parameters; there were

11 404 data and a total of 3444 geometrical restraints were

generated for the restrained calculation.

The eigenvalue spectra for the unrestrained and restrained

normal matrices were calculated. The resulting spectra are

shown in Fig. 1. The eigenvalues cover a dynamic range of

Figure 1
Eigenvalue spectra of restrained and unrestrained re®nement normal
matrices with 1.9 AÊ data.



greater than 109 in each case. The y axis shows log10 (eigen-

value). This conclusively demonstrates the need for 64-bit

arithmetic for this combination of parameter scales and data.

The eigenvalue spectra for both the restrained and unre-

strained calculations show two distinct regions: a region of

about 3000 larger eigenvalues and a region of about 1000

smaller eigenvalues. Since this model contains 959 atoms, the

obvious interpretation is that the large eigenvalues correspond

to combinations of positional parameters and the smaller

eigenvalues correspond to combinations of thermal para-

meters. The separation is not total, i.e. every parameter has a

non-zero contribution to every eigenvector, and so positional

and thermal parameters may still be signi®cantly correlated.

The separation observed here is purely a result of the choice of

units for the positional and thermal parameters. This may be

con®rmed by examining the correlation matrix, which reveals

signi®cant correlation between positional and thermal para-

meters.

The eigenvalues are higher for the restrained calculation

than for the unrestrained case, indicating that all the para-

meters are better determined in the restrained case. The

restrained spectrum also shows additional features. The 900

largest eigenvalues have increased more than the rest,

resulting in a ridge at the top of the spectrum. This must be an

effect of introducing the geometric restraints, which again

suggests an interpretation. There are approximately 862

strong bond-length restraints (Table 1), resulting in a similar

number of the positional parameter combinations becoming

signi®cantly better determined.

To obtain a better idea of which parameters contribute to

different eigenvectors, the most signi®cant parameters

contributing to 24 eigenvectors and their contributions are

listed in Table 2 for the unrestrained re®nement. The eigen-

vectors shown are the eigenvectors with the eight largest

eigenvalues, eight eigenvalues from the middle of the list and

the eight smallest eigenvalues. From the table it is clear that

the eigenvectors corresponding to the smallest eigenvalues are

made up principally of thermal parameters of side-chain atoms

in residues 18, 83, 92 and 98. These side chains are also ill-

de®ned in the electron-density map.

The eigenvectors corresponding to the largest eigenvalues

are made up principally of z coordinates of atoms in the Fe±S

clusters. The z coordinates are better de®ned than the x and y

coordinates because the z axis is longer and the re®nement

parameters are expressed as fractional coordinates. Both the

X-ray and geometrical restraints are isotropic in strength

(given an isotropic resolution limit to the data) when

expressed in orthogonal coordinates. Since the z axis is longer,

an isotropic perturbation in orthogonal coordinates leads to

smaller changes in the fractional z coordinate than in the

others. This effect could be isolated by conditioning the matrix

(x3).

Eigenvectors 3546 and 3547 (corresponding to the two

largest eigenvalues) are made up exclusively from two special

parameters, WAT1 and WAT2, which are the parameters of

the bulk-solvent correction. The separation of these two

parameters is a result of the choice of units for those para-

meters. There is one further special parameter, the overall

scale factor OSF. This parameter contributes mainly to

eigenvectors in the region between the thermal and positional

parameters ± around eigenvector 880. The overall scale factor

is positively correlated with the U values in the model (mean

correlation 5.6%), but much more weakly correlated with the

positional parameters, and the correlation takes either sign.

The intermediate eigenvectors contain an even mix of many

atomic parameters. Unlike the extreme eigenvectors, no one

parameter contributes strongly to each eigenvector. This

distribution can be seen more clearly in Fig. 2, where the

number of parameters making signi®cant contribution to each

eigenvector is plotted against eigenvalue number. A `signi®-

cant contribution' is de®ned as a contribution of more than

1/n, where n is the number of parameters. Equal eigenvalues

imply degenerate eigenvectors. Thus, in the ¯at regions of the

eigenvalue spectrum where there are many eigenvalues of

similar magnitude, the eigenvectors combine contributions

from many parameters. However, where the spectrum is steep

and the eigenvalues have signi®cantly different magnitudes,

the eigenvectors only combine contributions from a few

parameters. This highlights the fact that the eigenvalue

calculation separates parameter combinations according to

curvature of the residual: when there are many parameters

whose variation leads to a similar effect of the residual, the

eigenvectors form sets of orthogonal combinations of those
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Table 1
Number of restraints, type and desired e.s.d. for the 1.9 AÊ restrained
re®nement.

Type of restraint
SHELXL
keyword

SHELXL
restraint e.s.d.

Number of
restraints

Bond length DFIX 0.02 AÊ 862
Bond angle DANG 0.04 rad 1177
Chiral vol. CHIV 0.10 AÊ 3 149
Flat res./ring FLAT 0.45 AÊ 3 262
Anti-bumping BUMP 0.02 AÊ 15
Bonded atom Us SIMU 0.14 AÊ 2 851

Figure 2
Number of signi®cant parameters contributing to each eigenvector,
unrestrained re®nement with 1.9 AÊ data.
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similar parameters. When the curvature of a parameter has a

unique value and is not correlated with another parameter, it

will contribute to only a single eigenvector.

5.2. Classification of eigenvectors in terms of parameters

Further information concerning features of the model

which are well or ill-determined may be obtained by dividing

the re®nement parameters into

a small number of classes and

then examining which classes of

parameter contribute to each

eigenvector. The parameters

were divided into the following

classes: (i) special parameters

(overall scale factor, bulk-

solvent parameters), (ii) para-

meters of atoms of the Fe±S

clusters, (iii) parameters of

solvent atoms, (iv) parameters

of protein main-chain atoms, (v)

parameters of protein side-

chain atoms.

Each class of atomic para-

meters was further divided into

positional and thermal para-

meters, giving a total of nine

classes. The contribution from

each class of parameter to every

eigenvector is shown as a

stacked bar chart. Colours indi-

cate the parameter classes, with

thermal parameters distin-

guished by lighter shades of the

positional parameters.

Fig. 3 shows the class plot for

the unrestrained calculation.

The plot shows a clear separa-

tion between positional para-

meters (contributing to the

eigenparameters of higher

curvature, on the right of the

plot) and thermal parameters

(contributing to the eigenpara-

meters of lower curvature, on

the left).

Most of the Fe±S positional

parameters are very well deter-

mined. There are also some

very well determined side-

chain positional parameters.

Examination of the eigen-

parameters of highest curv-

ature reveals these side-

chain parameters to be coordi-

nates of S atoms, which contri-

bute more to scattering than the

bulk of main-chain and side-chain atoms.

The worst de®ned positional parameters (around eigen-

value 950) include mainly contributions from side-chain

positional parameters. These are generally parameters of

atoms in long or apparently disordered side chains.

The distribution of parameter classes on the left of the plot

is very similar to that on the right of the plot, with thermal

parameters replacing positional parameters. The solvent

Table 2
Strongest contributions from parameters to eigenvectors for (a) the eight smallest eigenvalues, (b) eight
median eigenvalues amd (c) the eight largest eigenvalues, 1.9 AÊ unrestrained calculation.

The eigenvalue numbers are given in the ®rst column. Each entry gives the contribution (%), the parameter type
and the atom name, respectively.

(a) Eigenvectors for eight smallest eigenvalues.

1 78 U 18 U 3 U 1 U 0 y 0 U 0 U 0 U
OE1 92 CD 92 OE2 92 CG 92 CD 92 OE1 18 OE2 18 CD 18

2 66 U 25 U 8 U 1 U 0 U 0 U 0 U 0 y
CD 92 OE2 92 OE1 92 CG 92 CE 98 OE2 18 CD 18 CD 92

3 58 U 27 U 12 U 2 U 1 U 0 U 0 U 0 U
CE 98 CD 98 NZ 98 CG 98 CD 83 OE2 18 CD 92 OE1 18

4 55 U 32 U 5 U 4 U 1 U 1 U 0 U 0 U
NZ 98 CD 98 CG 98 OE1 18 CE 98 OE2 18 CD 18 OE2 83

5 63 U 24 U 6 U 3 U 2 U 0 U 0 U 0 U
OE1 18 CD 18 OE2 18 NZ 98 CD 98 CB 18 CG 98 OE2 92

6 45 U 39 U 6 U 5 U 2 U 1 U 0 U 0 U
CD 18 OE2 18 CG 92 OE1 18 OE2 92 CD 92 CG 18 CD 98

7 50 U 34 U 5 U 4 U 3 U 2 U 0 U 0 U
CG 92 OE2 92 CD 18 CD 92 OE2 18 OE1 92 NZ 98 CD 98

8 35 U 26 U 26 U 6 U 4 U 1 U 1 U 0 U
CE 98 CD 98 NZ 98 CD 83 CG 98 OE2 83 CG 92 CD 92

(b) Eigenvectors for eight median eigenvalues.

1770 1 y 1 x 1 y 1 x 1 x 1 y 1 y 1 z
ND2 80 CB 11 C 5 C 67 O 127 C 11 CB 15 CE 85

1771 1 y 1 z 1 x 1 x 1 y 1 z 1 x 1 y
CD2 101 OD1 58 CG1 17 NE2 35 O 77 CG 52 CB 61 O 119

1772 1 x 1 y 1 x 1 y 1 z 1 z 1 x 1 y
O 129 CG 71 N 83 O 114 CE1 35 CD2 35 CD1 26 C 19

1773 1 x 1 z 1 y 1 x 1 x 1 x 1 y 1 x
NZ 84 CB 77 CB 72 O 119 CG2 82 O 77 CA 68 NE2 52

1774 1 x 1 x 1 y 1 z 1 z 1 x 1 y 1 x
CB 56 CG2 14 N 58 CE- 10 OE2 83 CD 65 CE 12 CD2 32

1775 1 y 1 y 1 x 1 y 1 y 0 y 0 y 0 y
O 114 CD2 26 O 119 O 84 CA 37 N 20 CA 65 CB 102

1776 1 y 1 x 1 x 1 y 1 y 1 x 1 x 1 x
CD 21 CD1 2 CZ 25 CG2 54 OD2 15 CG2 14 CD2 31 N 94

1777 1 y 1 x 1 x 1 z 1 y 1 z 1 y 1 x
O 135 O 126 CB 106 CE1 35 OE1 57 O 120 CG 35 CD1 67

(c) Eigenvectors for eight largest eigenvalues.

3540 30 z 29 z 25 z 6 z 2 z 2 z 1 z 1 z
Fe4 107 Fe2 107 Fe3 107 Fe1 108 Fe2 108 S1 107 Fe1 107 S2 107

3541 47 z 15 z 13 z 12 z 7 z 1 z 1 z 0 z
Fe1 108 Fe2 108 Fe3 107 Fe1 107 Fe2 107 S2 108 S1 108 Fe4 107

3542 63 z 20 z 9 z 2 z 1 z 1 z 1 z 0 z
Fe2 108 Fe1 108 Fe2 107 Fe3 108 Fe1 107 Fe3 107 S4 108 S3 108

3543 38 z 21 z 13 z 12 z 9% z 2 z 1 z 1 z
Fe2 107 Fe1 107 Fe4 107 Fe1 108 Fe2 108 Fe3 108 Fe3 107 SG 39

3544 55 z 13 z 12 z 9 z 5 z 2 z 1 z 0 z
Fe1 107 Fe3 108 Fe4 107 Fe2 107 Fe3 107 Fe1 108 S3 107 SG 39

3545 79 z 5 z 4 z 4 z 2 z 1 z 1 z 1 z
Fe3 108 Fe1 107 Fe2 107 Fe2 108 Fe4 107 S2 108 S4 108 Fe3 107

3546 83 * 17 * 0 z 0 z 0 z 0 y 0 z 0 z
WAT2 WAT1 Fe1 107 Fe1 108 S1 107 Fe2 107 S3 108 Fe2 108

3547 83 * 17 * 0 z 0 z 0 z 0 * 0 y 0 x
WAT1 WAT2 Fe1 107 S1 107 S3 108 OSF Fe2 107 Fe3 107



atoms appear to have been cautiously chosen, since neither

their positional or thermal parameters are at the bottom of the

respective regions of the spectrum.

Fig. 4 shows the corresponding plot for the restrained

calculation. The main features are similar. However, the

distribution of classes contributing to about 1000 of the best

de®ned eigenparameters has been perturbed. This is consis-

tent with the perturbation of the corresponding region of the

eigenvalue spectrum. The strong bond-length restraints mean

that many combinations of protein-atom positional

parameters are now stronger than some of the Fe±S cluster

parameters.

5.3. Effect of restraints

To examine the effect of various restraints on the condi-

tioning of the problem, the normal matrices were calculated

adding successive restraints to the unrestrained calculation in

order to obtain some indication of the effect of various

restraints. The eigenvalue spectra for all of the calculations are

shown in Fig. 5. The types and numbers of different geome-

trical restraints are listed in Table 1.

Addition of bond-length restraints to the unrestrained

calculation makes a signi®cant difference to the shape of the

spectrum. All of the eigenvalues increase, but in particular the

900 largest eigenvalues increase signi®cantly more than the

others, justifying the previous conclusions about this group of

eigenparameters.

Addition of the bond-angle restraints signi®cantly increases

the remaining eigenvalues not affected by the bond lengths.

This is consistent with the bond-angle restraints acting mainly

perpendicular to the bond-length restraints. The few

remaining positional restraints (chiral volumes, ¯at rings, anti-

bumping) give a slight further increase in the remaining

eigenvalues.

Restraining the U values of neighboring atoms increases the

eigenvalues in the thermal region of the spectrum, including

the very smallest eigenvalues.

The plot also shows that the positional restraints (particu-

larly bond lengths and angles) do affect the smaller eigen-

values, which are mainly from thermal parameters. This

supports the observation that the positional and thermal

parameters are not separable.

5.4. Visualization of eigenvectors

The shape of the eigenvalue spectrum and the effects of

different restraints may be further understood by plotting

some of the eigenvectors in three dimensions. Each eigen-

vector describes a unit vector in the parameter space. This can

be visualized using a three-dimensional model of the molecule

and attaching a vector to each atom based on the projection of

the eigenvector onto the positional parameters of that atom.

(At present, projections of the eigenvector onto U values are

ignored.)
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Figure 3
Class plot of eigenvector composition in terms of parameter classes
against eigenvector number for unrestrained re®nement with 1.9 AÊ data.

Figure 4
Class plot of eigenvector composition in terms of parameter classes
against eigenvector number for restrained re®nement with 1.9 AÊ data.

Figure 5
Effect of various geometrical restraints on the eigenvalue spectrum with
1.9 AÊ data. Note: line styles are obscured where lines overlap.
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The resulting three-dimensional object indicates how the

atoms of the model will move if a small change is made to that

eigenparameter. The change can be positive or negative, with

the graphical representation showing the positive direction.

The vectors have been scaled so that an eigenvector which

contains contributions from only a single atom will be 5 AÊ in

length.

Fig. 6 shows the region of the model around residue 77 with

eigenvector 1066 superimposed. This corresponds to an

eigenvalue at the low end of the positional region of the

spectrum. The eigenvector is involved in twisting the valine

side chain about its bond, a motion which is not affected by

any of the geometrical restraints. The same eigenvector also

contributes to similar effects elsewhere in the structure.

Fig. 7 shows the region of the model around residue 77 with

eigenvector 3497 superimposed. This corresponds to an

eigenvalue at the high end of the positional region of the

spectrum, on the ridge which has been attributed to bond

length e.s.d.s. It is principally involved in the stretching of a

main-chain bond (with lesser contributions to some of the

other nearby bonds), a motion which is strongly affected by

the geometrical restraints.

Fig. 8 shows the region of the model around residue 78 with

eigenvector 3546 superimposed. This corresponds to the

largest eigenvalue in the spectrum, excluding the eigenvectors

representing the bulk-solvent correction. The strongest

eigenvectors in the restrained calculation all correspond to

distortions of tryptophan side chains (contrast this with the

unrestrained calculation in Table 2, where the best determined

parameters were those of the Fe±S clusters). The ¯atness

restraint is clearly having a very strong effect on the few atoms

to which it is applied.

5.5. The RHS of the least-squares equations

The RHS of the least-squares equations (the RHS vector) is

obtained by premultiplying the residual vector of restraint

disagreements by the matrix of derivatives with respect to the

parameters. In theory, at the end of a re®nement the RHS

vector of the least-squares equations should be zero, otherwise

technically the re®nement has not converged. However in

practice this is never the case, for a number of reasons.

(i) The eigenvalues have a large dynamic range. Small shifts

to well determined parameters will perturb the normal matrix

suf®ciently that estimates for the ill-determined parameters

will be subject to large errors. Ill-determined parameters may

therefore not re®ne until all the well determined parameters

have been fully re®ned.

Figure 7
Eigenvector 3497: this well determined eigenparameter is strongly
involved in the length of a main-chain bond.

Figure 6
Eigenvector 1066: this poorly determined eigenparameter is strongly
involved in the rotation of the valine side chain.

Figure 8
Eigenvector 3546: this very well determined eigenparameter is involved
in the ¯atness of a tryptophan.



(ii) The normal matrix may not be slowly varying. If the

normal matrix varies rapidly with some parameters, those

parameters will re®ne very slowly or not at all. This is because

in such cases the second-order approximation to the sum of

squares of residuals is poor.

(iii) Limits of machine precision will introduce noise at all

stages.

The remaining RHS vector of the normal equations can be

projected onto the eigenvector axes (formed by taking the dot

product of the RHS vector with each eigenvector in turn). The

square of this projection is plotted as a function of eigenvector

number in Fig. 9, along with the eigenvalue spectrum. The

graph shows the curvature along each eigenvalue direction

and the squared contribution to the RHS vector along that

direction.

Both curves have a common shape, from which it is clear

that although there is considerable variation from parameter

to parameter, the maximum residual contributions from any

parameter is closely related to the curvature of the re®nement

residual. Since the re®nement calculation will be most strongly

in¯uenced by the largest remaining residual, it tends to

partition the remaining residual equally amongst the para-

meters, thus matching the shape of the eigenvalue spectrum.

However, sharp features are apparent in the residual

spectrum around eigenvalues 2647 and 2840. These features

become clearer if the ratio of the RHS spectrum to the

eigenvalue spectrum is calculated, shown on a linear axis in

Fig. 10. Taking this ratio normalizes the RHS contributions,

since the eigenvalues are the inverse variances of the eigen-

parameters. It should be possible to apply a signi®cance test to

identify informative outliers in this plot.

Eigenvector 2647, corresponding to the highest peak in

Fig. 10, is shown in Fig. 11. The eigenparameter includes

strong contributions from the positional parameters for the

side chain of residue 98. Residue 98 is a surface lysine for

which the density is particularly poor. Variation of the

eigenparameter corresponds to stretching and compressing

bonds along the side chain. The restraint dissatisfaction has

become concentrated in this eigenparameter because the

X-ray terms (re¯ected in the map density) and the geometric

restraints are irreconcilable for this side chain.

Comparison of this re®nement with the high-resolution

re®nement (x6) suggests that this side chain is suf®ciently

disordered that modeling a second conformation would not

help. The ratio plot has therefore revealed a genuine problem

area in the structure. It is unlikely that a small number of ®xed

conformations adequately model the physical reality of this

portion of the structure.

Note that peaks only appear in the RHS/eigenvalue ratio

plot after full-matrix re®nement has been applied to near-

convergence. Models which have been re®ned using the

conjugate-gradient method or which have not been re®ned to
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Figure 9
Square of the projection of the RHS onto the eigenparameters as a
function of eigenparameter number, in comparison with the eigenvalue
spectrum. The curves show a broadly similar shape.

Figure 10
Ratio of the square of the projection of the RHS onto the
eigenparameters to eigenvector as a function of eigenparameter number.
The ratio clearly shows sharp peaks where the restraints are strongly
dissatis®ed.

Figure 11
Eigenvector 2647: this eigenvector corresponding to a peak in the RHS
spectrum. The side chain is one of the worst de®ned in the structure.
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near convergence tend not to show sharp peaks. With an

unre®ned model, the constraint dissatisfaction is spread

amongst all the parameters. As the re®nement approaches

convergence, the dissatisfaction is concentrated into those

parameters for which the quadratic approximation is a poor

description. In this case, the dissatisfaction is concentrated in

those parameter combinations for which the model does not

describe the X-ray data well and therefore are among the last

to re®ne.

The RHS contribution/eigenvalue ratio has a particular

statistical signi®cance (see, for example, Kendell et al., 1991).

The inverse eigenvalues are the variances of the eigenpara-

meters and the re®nement shifts to the eigenparameters are

given by the RHS vector in the eigenparameter space divided

by the eigenvalues. Therefore, the RHS contribution/eigen-

value ratio represents the �2 normalized eigenparameter shift.

This function may also be calculated in parameter space for a

direct indication of the signi®cance of the re®nement shift

applied to each parameter.

6. Anisotropic model at 1.3 AÊ

To test the usefulness of these methods at a higher resolution,

a second set of test data were used. X-ray data is available

from frozen crystals of the same ferredoxin protein. This data

extends to 1.3 AÊ . The structure was re-re®ned by Stout et al.

(1998) using SHELXL to produce a model with anisotropic

thermal parameters. Additional solvent atoms are also present

in this model, bringing the total number of atoms to 1018.

6.1. The eigenvalue spectra

Restrained and unrestrained re®nement calculations were

set up using the anisotropic model and the low-temperature

data to 1.3 AÊ . SHELXL was again used to calculate normal

matrices in each case. In addition to the geometrical restraints

used for the isotropic model, additional restraints were placed

on the anisotropic thermal parameters requiring equal

thermal motion along the bond axis of bonded atoms (SIMU

keyword) and restraining water atoms to be roughly isotropic

(ISOR). The model had 9165 parameters, there were 30 880

X-ray data and 10 718 geometrical restraints were generated

for the restrained calculation.

The eigenvalue spectra for the unrestrained and restrained

normal matrices are shown in Fig. 12. The eigenvalue spectra

each show two regions, one of about 3000 large eigenvalues

and another of about 6000 smaller eigenvalues. This is again

consistent with three positional parameters per atom and six

thermal parameters.

In contrast to the 1.9 AÊ calculation, the eigenvalue spectra

for the restrained calculation does not show any additional

feature owing to the bond-length restraints and the increase in

eigenvalues after application of the restraints is less

pronounced. At this resolution, the X-ray terms are dominant

in determining the positional parameters and thus the impact

of the geometrical restraints is reduced.

6.2. Classification of eigenvectors in terms of parameters

The class plot for the 1.3 AÊ unrestrained re®nement is

shown in Fig. 13. The pattern of parameter contributions to

the eigenparameters is similar to the lower resolution case,

although there are now far more thermal parameters. The

additional solvent atoms in this model cluster at the bottom of

both the positional and thermal regions of the spectrum,

indicating that these atoms are comparatively less well

determined than the solvent atoms from the room tempera-

ture model.

The class plot for the restrained re®nement is shown in

Fig. 14. There is some perturbation to the distribution of

parameters amongst the eigenvectors of largest eigenvalue in

comparison to the unrestrained case, but the perturbation is

less than for the room-temperature re®nement. This con®rms

that the impact of the geometrical restraints is smaller in this

case. In contrast to the room-temperature case, there is now

some perturbation of the thermal parameter contributions

from the unrestrained case. Again around 1000 eigenpara-

meters have been perturbed, suggesting that this perturbation

Figure 12
Eigenvalue spectra of restrained and unrestrained re®nement normal
matrices with 1.3 AÊ data.

Figure 13
Class plot of eigenvector composition in terms of parameter classes
against eigenvector number for unrestrained re®nement with 1.3 AÊ data.



arises from the rigid-bond restraints on thermal parameters

(the SHELXL SIMU restraint).

6.3. The RHS spectrum for the restrained calculation

The ratio of RHS contributions to eigenvalues for the

restrained calculation at 1.3 AÊ is plotted in Fig. 15(a). This

graph again shows some sharp peaks, but in contrast to the

room-temperature case the largest feature is at the top end of

the thermal region of the spectrum.

The eigenvectors corresponding to the highest peaks in this

plot are listed in Table 4 in terms of their largest contributors.

The eigenvectors in the large peak all include contributions

from S-atom thermal parameters, which might be expected to

be well determined. The common and distinctive feature of

these eigenvectors is contributions from thermal parameters

of atoms in the side chain of residue 18. The lesser peak

comprises contributions from the long ¯exible side chains of

residues 83 and 92 (both glutamates).

The model for residue 18 is shown in Fig. 16, with the

electron density. The electron density is poor and the thermal

ellipsoids for these atoms are extremely anisotropic. The

thermal parameters appear to be trying to ®t absent density

and are in disagreement with the geometrical restraints. There

is density to suggest an alter-

nate, possibly better, conforma-

tion.

The side chain was moved

into the alternative density and

subjected to local re®nement

and the whole model was then

re®ned using full-matrix least-

squares re®nement. The new

side chain displayed good

density and the R factor

dropped, but only after re®ne-

ment of the whole model

(Table 5). There were no major

motions during this re®nement, but most parameters

displayed small shifts, con®rming that the whole model had

been biased by the incorrect side chain. The RHS/eigenvalue

ratio plot for the re®ned model (Fig. 15b) shows that the
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Figure 15
RHS/eigenvector ratio for the 1.3 AÊ data and (a) initial re®ned 1.3 AÊ

model, (b) after modi®cation of the side chain and re®nement of the
model.

Figure 14
Class plot of eigenvector composition in terms of parameter classes
against eigenvector number for restrained re®nement with 1.3 AÊ data.

Table 3
Number of parameters, e.s.d. of a Fe-atom position and magnitude/intensity R factors as thermal parameters
are grouped for unrestrained re®nement against the 3.0 AÊ data (3230 data).

The model is seriously over-parameterized in all cases.

Grouping
No.
of params

No.
undetermined

Fe1±107 position
e.s.d. (AÊ )

Goodness
of ®t

R factors
R1/wR2

None 3547 317 1 1 0.196/0.543
CAÐCÐN 3335 105 1 1 0.198/0.553
CAÐCÐNÐO 3230 0² 2.1 � 107 1 0.201/0.566
CAÐCÐNÐO,

CBÐCG
3162 0 3.3 45.5 0.203/0.571

All main, all side 3020 0 0.8 26.8 0.207/0.586

² nr � n, thus the matrix is non-singular but the goodness-of-®t is in®nite.
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original peak has disappeared, but the secondary peak arising

from the Glu side chains has increased.

Residue 18 was re-examined in the room-temperature

model. There was no clear density for the side chain, even with

the low-temperature model as a guide. The residue does not

contribute to any clear peaks in the RHS/eigenvalue ratio plot

at low resolution. It is possible that this side chain is disor-

dered at room temperature and ordered at low temperature.

7. Lower resolutions (2.0±3.0 AÊ )

An examination of the behavior of the re®nement at 2.0 AÊ and

worse resolution was carried out using the 1.9 AÊ resolution

X-PLOR model with the room-temperature data truncated to

the desired resolution. The model is therefore superior to that

which could be obtained from the truncated data alone, but

use of a ®xed model allows a more direct comparison of the

effect of reducing the number of

X-ray terms in the calculation of

the normal matrix.

Restrained and unrestrained

calculations were set up at 2.0

(10 009 data), 2.5 (5427 data)

and 3.0 AÊ (3230 data) resolu-

tion. The normal matrix was

calculated for each case. The

eigenvalue spectra for the

restrained re®nements are

shown in Fig. 17. The model and

geometric restraints in each case

are identical; the only difference

is the number of X-ray terms.

The 1000 largest eigenvalues are

similar in all three cases,

suggesting that these combinations are determined principally

by the geometrical restraints: this includes the parameter

combinations attributed to bond-length restraints.

As the resolution worsens, the remaining eigenparameters

become less well determined, with the thermal region of the

spectrum dropping most. The reduction in the number of

X-ray data increases the difference in scale between the

positional and thermal parameters. This does not prove that

the thermal parameters are more sensitive to data resolution

than the positional parameters. Indeed, it seems reasonable to

expect that as the thermal parameter of a poorly de®ned atom

becomes unde®ned, the positional parameters will also

become unde®ned.

The eigenvalue spectra for the unrestrained re®nements are

shown in Fig. 18. At 2.0 AÊ resolution, the problem is still well

conditioned (over a single step; however, this does not mean

that multiple steps of re®nement will converge). At 2.5 AÊ

resolution, all the eigenparameters are still de®ned, but the

matrix is nearly singular. At 3.0 AÊ , there are 316 eigenvalues

which are zero or approximately zero.

Figure 17
Eigenvalue spectra for restrained re®nement of 1.9 AÊ model and
truncated data at 2.0, 2.5 and 3.0 AÊ .

Table 4
Strongest contributions from parameters to eigenvectors for peaks in the RHS/eigenvalue ratio for the initial
re®ned 1.3 AÊ model.

Eigenvalue
No.

RHS
ev�10ÿ9 Contribution (%), parameter type, atom name, respectively

4737 4.1 2 U13 1 U13 1 U11 1 U11 1 U33 1 U22 1 U23 1 U33

OE2 92 CD 92 OE2 92 CD 92 CG2 82 CG 62 CB 82 OE2 92
4754 2.5 2 U23 1 U23 1 U13 1 U22 1 U13 1 U13 1 U22 1 U13

OE2 83 CD 83 OE2 92 OE2 83 O 104 O 62 CD 83 CD 92
6005 13.8 31 U13 11 U12 8 U23 8 U13 6 U12 4 U33 2 U13 2 U13

SG 45 SD 64 S1 108 OE2 18 S1 108 OE2 18 SG 49 SG 20
6006 25.2 25 U13 13 U13 11 U12 8 U13 6 U33 5 U23 2 U11 2 U23

SG 45 OE2 18 SD 64 SG 49 OE2 18 SG 24 OE2 18 OE2 18
6007 12.1 16 U12 12 U23 9 U12 6 U13 5 U23 4 U13 4 U13 4 U13

SD 64 S1 108 S1 108 OE2 18 SG 11 SG 16 SG 49 S1 108
6009 22.9 26 U13 12 U13 12 U13 5 U33 4 U13 3 U22 2 U23 2 U11

SG 49 S2 107 OE2 18 OE2 18 SG 20 SG 49 SG 11 OE2 18

Figure 16
Residue 18 and density from the initial 1.3 AÊ model.



7.1. Estimation of e.s.d.s

Let v be a vector describing a combination of parameters

for which the e.s.d. is required. The e.s.d. of v is given by the

square root of the variance, given by vTNÿ1v. (This formula-

tion includes all the appropriate covariance terms.)

Let Q be the matrix whose columns are the eigenvectors

and K be the diagonal matrix whose diagonal elements are the

eigenvalues. Then

N � QKQT �11�
Nÿ1 � QKÿ1QT : �12�

The variance may also be calculated using the projection of v

into the eigenparameter space,

�2
v � vTNÿ1v

� vTQKÿ1QTv

� �QTv�TKÿ1�QTv�: �13�
Since Kÿ1 is the diagonal matrix of inverse eigenvalues, this

simpli®es to

v0 � QTv

�2
v �

P
i�1;n

v02i =�i: �14�

When the normal matrix becomes singular, some of the �i

become zero and so in general it becomes impossible to

calculate e.s.d.s. However, even in this case there are two

possible approaches which may allow estimation of e.s.d.s for

some parameters or parameter combinations.

(i) Isolate a subspace of the parameter space containing all

the parameters which contribute to the undetermined

subspace. e.s.d.s of combinations of the remaining parameters

may be estimated normally. An e.s.d. can be calculated for any

parameter combination where v0i � 0 for every i for which

�i � 0 in (14).

(ii) Identify the parameters which contribute signi®cantly to

the undetermined eigenparameters and reduce the para-

meterization of the model in a reasonable way to remove these

parameters.

The ®rst option initially seemed reasonable, but the ratio of

the eigenvalues between the positional and thermal regions

ranges from 102 to 106, so even a tiny contribution from a

positional parameter to a poorly determined eigenvector can

have a signi®cant impact on the e.s.d.s. Conditioning the

normal matrix would reduce the disparity of scale, but would

also mix the positional and thermal parameters.

Examining the contributions to the undetermined eigen-

parameters at 3.0 AÊ , it appears that not even the positional

parameters of the Fe atoms can be determined since they have

signi®cant contributions to undetermined eigenparameters. To

con®rm this result, the contributions to the e.s.d.s of the Fe

parameters were examined for the non-singular matrix at

2.0 AÊ , but even in this case the most ill-de®ned eigenpara-

meters contribute signi®cantly to the Fe-atom positional

e.s.d.s. The problem must therefore be reparameterized.

Several reparameterizations of the model were tested,

replacing individual atomic Us with grouped Us within each

residue. The model was not been re-re®ned, but individual Us

were replaced by their average values within the group. The

type of grouping, number of parameters, number of un-

determined eigenparameters and R factor are listed in Table 3.

This table also gives the positional e.s.d. of Fe1±107, in the

cases where the matrix is non-singular. [These values are not

normalized by goodness-of-®t and give at best a relative

indication of e.s.d., for reasons given by Schwarzenbach et al.

(1989). The goodness-of-®t is listed for reference.] As the

number of parameters is reduced, the R factor increases.

However, at the same time the problem becomes non-singular

and the parameter e.s.d.s improve. (Note that the model is still

severely over-parameterized at this resolution, as shown by

the goodness-of-®t.)

The reduced-parameter model does not ®t the data so well,

but its parameters may be determined more precisely. This is

in accordance with general experience from the free R factor

(Kleywegt & Jones, 1995), although in this case the result has

been obtained without performing any further re®nement on

the reparameterized model.

8. Conclusions

The calculation of the eigenvalue spectrum of the re®nement

normal matrix provides detailed information about the

conditioning of the re®nement problem. The spectrum itself
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Table 5
Change in magnitude and intensity R factor during modeling of residue
18 side chain.

Re®nement stage
Conventional
R factor (R1)

Intensity
R factor (wR2)

Initially re®ned model 0.1501 0.3585
Side chain 18 moved 0.1514 0.3715
Local re®nement (5 residues) 0.1505 0.3673
Re®nement of whole model 0.1481 0.3552

Figure 18
Eigenvalue spectra for unrestrained re®nement of 1.9 AÊ model and
truncated data at 2.0, 2.5 and 3.0 AÊ (un-normalized).
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provides information about the range of variances for model

parameters of a particular type and about the numerical

precision required to perform the re®nement with a particular

choice of parameter units.

The comparison of different classes of parameters provides

information about the reliability of modeling different classes

of features within the structure. This information might be

used to determine when a reasonable number of solvent atoms

have been included or whether restraints may be added or

removed for some features. Comparison of the eigenvalue

spectra obtained with different combinations of geometrical

restraints gives insight into the impact of the different types of

restraint on the model.

The RHS spectrum gives valuable insight into the failure of

re®nement calculations to fully converge. If a part of a model

is wrong and the geometry is not fully restrained, then

re®nement will often produce an unreasonable geometric

con®guration in the problem region. Adding geometrical

restraints stabilizes the re®nement, at a cost of concealing

some of these problem regions. The projected RHS spectrum

reveals regions where the disagreement between X-ray and

other restraints is preventing convergence, thus allowing the

location of problem regions which might otherwise have been

missed owing to the effectiveness of the geometric restraints.

These techniques, while still in the early stages of devel-

opment, offer considerable scope for improving the under-

standing of structure re®nement. The insights presented here

are on the whole in agreement with protocols developed

through the practical application of re®nement over many

years (see, for example, Kleywegt & Jones, 1997); however, it

is hoped that the tools presented here will provide a simpler

and more objective means for the development and testing

new re®nement protocols. Further work is already in progress

to examine the effect of conditioning the normal matrix and

how the resulting information may be applied to stabilize an

underdetermined re®nement. Future objectives of this work

will include the application of the information available from

eigensystem analysis to identi®cation of new parameteriza-

tions and geometric restraints and the comparison of the

normal matrices obtained using least-squares and maximum-

likelihood residuals.
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